
Interpreting Write Performance of Supercomputer
I/O Systems with Regression Models
Bing Xie∗ Zilong Tan† Philip Carns‡ Jeff Chase§ Kevin Harms‡ Jay Lofstead¶

Sarp Oral∗ Sudharshan S. Vazhkudai‖ Feiyi Wang∗
∗ Oak Ridge National Laboratory
† Carnegie Mellon University
‡ Argonne National Laboratory

§ Duke University
¶ Sandia National Laboratories

Abstract—This work seeks to advance the state of the art in
HPC I/O performance analysis and interpretation. In particular,
we demonstrate effective techniques to: (1) model output per-
formance in the presence of I/O interference from production
loads; (2) build features from write patterns and key parameters
of the system architecture and configurations; (3) employ suitable
machine learning algorithms to improve model accuracy. We
train models with five popular regression algorithms and conduct
experiments on two distinct production HPC platforms. We
find that the lasso and random forest models predict output
performance with high accuracy on both of the target systems.
We also explore use of the models to guide adaptation in I/O
middleware systems, and show potential for improvements of at
least 15% from model-guided adaptation on 70% of samples,
and improvements up to 10× on some samples for both of the
target systems.

Index Terms—high performance computing, I/O performance,
machine learning

I. INTRODUCTION

In HPC there is a need for tools to predict I/O performance
accurately and interpret factors that influence performance. For
supercomputer facilities, more predictable I/O performance
enables more precise core-time allocations and more efficient
system utilization. For domain scientists with limited budgets
for compute cycles charged on application runtimes [1], accu-
rate prediction offers the potential to reduce I/O-induced idle
time in their runs (§II-A1, §IV-D).

It is a challenge to predict write performance accurately
on production supercomputers. One major obstacle is perfor-
mance variability due to resource contention. Supercomputer
I/O systems are shared by applications from different science
domains and with varying I/O outputs. The shared systems
therefore can deliver write bandwidths with large variations. To
illustrate this point, consider our results in Figure 1, showing
CDFs of performance variations across identical runs at dif-
ferent times. Cetus [2], at the Argonne Leadership Computing
Facility (ALCF), is relatively stable. Titan [3] and Summit [4]
at the Oak Ridge Leadership Computing Facility (OLCF) have
progressively worse variability. Moreover, this high variability
exists widely on other supercomputer I/O systems [5], [6].

‖ The author conducted this research when he was with Oak Ridge
National Laboratory.

1 1.5 2 2.5 3
Ratio of Max to Min bandwidths Observed

0

0.2

0.4

0.6

0.8

1

C
D

F
Cetus Write
Titan Write

Summit Read
Summit Write

Fig. 1: CDFs of I/O performance variations on Cetus, Titan
and Summit. The x-axis represents the measures (maxmin) of the
I/O bandwidths, each point represents the ratio of the max to
the min bandwidths of the identical IOR executions (§III-D).

The other major obstacle is the limited user-level visibility
into supercomputer I/O systems, which we refer to as the
black-box issue. In most cases, end users and I/O libraries
treat these systems as black boxes with minimal system-
level insight. There are user-level tools providing limited
information on application I/O behaviors such as Darshan
(§II-A2). Unfortunately, these tools leave much of the system-
side behaviors unexplored and insufficient for performance
prediction. Thus, for end users it is hard to understand the
write behaviors and the associated underlying root causes.

Despite the forementioned two challenges, the target ap-
plications, machines and filesystems show the characteristics
that allow us to build learning models. Specifically, we find
that a large group of scientific applications generate writes
with regular and predictable patterns; the mean performance
is effective to address their write behaviors (§II-A). On the
system side, although end-user applications by themselves
do not have sufficient I/O performance data collected, each
I/O write cycle can be considered as a multi-stage path (see
Figure 2) from the I/O issued by compute processes on some
compute nodes to the data committed to the persistent storage
devices. For each such stage, I/O performance data can be

derived from write patterns coupled with system design and
configuration (§III).

These findings motivate us to take a regression approach:
1) To address the high variability, we model the mean I/O

write performance and introduce a convergence-guaranteed
sampling method to generate training data (§III-D); 2) To
address the black-box issue, we consider the target systems
as multi-stage write paths, and treat the aggregate load, load
skew and resources in use on individual stages as I/O perfor-
mance-related parameters. We build model features on perfor-
mance-related parameters, and derive them from write patterns
and system design and configuration (§III-A). 3) To analyze
I/O interference in production environment, we address the
interference as part of the model features in the target systems.
4) We tried 5 popular learning models (linear, lasso, ridge,

decision tree and random forest) and find that the chosen lasso
and random forest models are highly accurate.

We apply this approach on two production supercomputers,
Cetus and Titan, deployed with GPFS and Lustre filesystems,
respectively. In particular, we conclude that:
1. Our approach identifies highly accurate models. The
chosen lasso models can attain ≤ 30% relative error for up to
98.31% (Cetus) and 100% (Titan) of the samples on the target
systems.
2. Our approach locates the most relevant features. Based
on our analysis, the write behaviors of GPFS systems are
dominated by the metadata load and load skew within super-
computers; the write behaviors of Lustre systems are heavily
determined by the aggregate load, load skew and resources in
use within supercomputers.
3. Our models are useful to improve write performance. We
explore the potential of using the chosen lasso models to guide
write adaptations by I/O middleware used in supercomputers.
The results show that there is significant potential to achieve
substantial improvements in write performance on the target
systems automatically.

II. BACKGROUND

A. Properties of Target Scientific Codes

1) Write Behaviors: On HPC platforms, a large group
of applications are numerical simulations and analyses of
physical phenomena. These applications are submitted as jobs
(runs), execute iterative computations and generate output data
periodically.

For typical applications, a run solves a fixed-space problem
such as a magnetically confined torus (XGC [7]), a multi-
dimensional mesh (Astrophysics) or a 3D grid (S3D [8]).
The run has a job description file specifying the numbers
of compute nodes, cores, and problem settings. The problem
space is partitioned into a group of equal-sized subspaces; each
process runs on a different core1 for a different subspace; all

1Blue Gene/Q machines [9] utilize 4-way hyperthreading and support 4
concurrent processes per core; but many users still choose to run each process
on a different core because of the memory limitation (e.g., 16GB memory per
node on Cetus).

processes execute the same numerical solver over a sequence
of iterations and synchronize after each iteration.

A run produces output data according to one or more
write patterns. Each pattern has a number of synchronous
output bursts originating from a set of compute nodes/cores.
It repeats on a fixed interval (write frequency) with each
burst recording the states (numerical values) of the same
variables. When writing bursts, the entire execution stalls until
the last byte of the data is acknowledged by the filesystem I/O
servers. Specifically, each core produces the same-size bursts
across iteration-intervals2 and the load is balanced among the
engaged cores. To summarize, these applications exhibit three
major properties:
Write patterns are generally fixed and predictable. The
number of bursts (determined by the number of I/O write
issuing cores), burst size (determined by the variables/spaces
recorded per burst), and write frequency, are all preconfigured
as problem settings.
Job execution time is predictable. The total execution time
is the sum of the times spent on computation and I/O writes.
The computation time can be estimated based on the problem
and its resource settings [10]. With an accurate prediction of
write times, a run’s execution time can be predicted.
Write cost is tunable. Users may want to control write cost.
For example, they may want to limit the checkpointing cost
to 10% of job execution times. With the time estimates on
computation and writes, users can control the checkpointing
cost by choosing its write frequency appropriately.

Scientific codes also produce data using different mecha-
nisms such as write-sharing, where processes write-share data
to a single file [6], or dynamic writes, such as AMR codes
where write load may be imbalanced among processes; this
imbalance may vary across operations.

2) Write Patterns in Production Load: We analyze Dar-
shan [11] logs collected from the machines at ALCF from
January 2017 to August 2018. Darshan characterizes the I/O
behaviors of scientific codes at the application level. It mon-
itors job executions and collects I/O statistics. In particular,
it records the metadata of I/O operations starting from when
a job calls MPI Init and stopping when MPI Finalize is
executed. Over the course of a year, Darshan has moni-
tored/recorded the application I/O profiles consuming ∼30%
of compute-core hours on ALCF systems.

The collected Darshan data comprises of 514,643 entries.
Each entry summarizes the I/O behaviors of a job, such as the
number of participating processes and burst-size histograms.
Specifically, Darshan reports the histograms of conventional
burst-size ranges. For example, for a process in an entry,
Darshan records “CP SIZE WRITE 10M 100M 17”meaning
that for the burst-size ranges 10M—100M the process writes
17 times. Darshan’s histogram summary is useful to under-
stand the repetitions of write patterns.

In summary, the recorded ALCF jobs execute on the scales
of 1—1,048,576 processes; spend 0.01—23.925 compute-core

2For some codes (e.g., XGC), data imbalance and variation may occur
across processes and operations, but in most cases it is ignorable [10].2

Mira-FS (Mira-FS1)Cetus

Metadata
pool

Compute
Nodes

I/O
Nodes

NSD
servers

NSDBridge
Nodes

Links

Infiniband
Network

(a) Cetus and Mira-FS1

Spider 2 (Atlas2)Titan

SION

MDS

Compute
Nodes

I/O
Routers

OSSes OSTs

(b) Titan and Atlas2

Fig. 2: Architectures of the target I/O systems. Cetus
and Titan take different strategies for relaying filesystem
operations. For each system, one mapping policy is employed
to connect compute nodes to bridge nodes (Cetus) and to I/O
routers (Titan) (discussed in §II-B1 and §II-B2), respectively.

hours for execution; produce Byte—Gigabyte bursts. Across
burst-size ranges, the write repetition per burst-size range is
3, 9, 66 times for quantile 0.3, 0.5 and 0.7, respectively.
Observation 1 . The analysis suggests that scientific writes
span over wide ranges for both scaling in terms of the number
of processes and the burst size. It motivates us to build
datasets for both representativeness and randomness across
write scales, burst sizes, and repetitions (§III-D).

B. Supercomputers and Their Filesystems

1) GPFS on Cetus and Mira-FS1: Cetus is an IBM Blue
Gene/Q machine, hosted at ALCF and connected to Mira-FS:
a GPFS filesystem serving Cetus and many other supercom-
puters at ALCF. Figure 2a presents Cetus and Mira-FS.

On Cetus, 4,096 compute nodes are connected by a 5-
D torus interconnect with 16 CPUs per node. Moreover, 32
I/O forwarding nodes, called I/O nodes, are evenly distributed
through the interconnect, each forwarding metadata and data
requests to Mira-FS for a group of 128 compute nodes. Cetus
routes I/O traffic statically: it points each compute node group
to a dedicated I/O node by sharing 2 designated bridge nodes,
each bridge node connecting to its I/O node by a single link.

Mira-FS has two partitions: Mira-FS0 and Mira-FS1, each a
single namespace on a metadata pool and a data pool. We ex-
periment on Mira-FS1 with 1 and 336 NSDs (Network Storage
Disks) for metadata and data services. For data service, 48
NSD servers manage 336 NSDs.
GPFS striping policy. To absorb bursts in parallel, GPFS
stripes burst data across NSDs in its data pool, as shown

in Figure 3a. For each burst, GPFS partitions the data into
a sequence of equal-size blocks and distributes the block
sequence across an NSD sequence in a round-robin way.
The block size (GPFS block size) is configured at filesystem
creation time. The NSD sequence starts from a random NSD
chosen independently for each burst and may range over the
entire data pool. Thus users do not control either of these
parameters. Mira-FS1 configures GPFS block size as 8MB.
GPFS subblock policy. GPFS manages filesystem fragmen-
tation with subblocks. Specifically, GPFS divides each block
into 32 equal-size subblocks. When the last block of a file
is < block size, GPFS partitions the block data into a group
of subblocks and merges/migrates the subblocks to the local
and/or remote NSDs to form full blocks. This policy works at
file close when the block size is determined.

2) Lustre on Titan and Atlas2: Titan is a Cray XK7
machine at OLCF and connected to a Lustre deployment
Spider 2. Figure 2b shows the system in detail.

On Titan, 18,688 compute nodes are connected by a 3-
D torus interconnect; each node has a 16-core CPU and a
GPU, and runs a Lustre software stack serving as a Metadata
Client (MDC) and an Object Storage Client (OSC). Titan is
connected to Spider 2 by a Scalable I/O Network (SION).

Spider 2 has two partitions (Atlas1 and Atlas2), each a
Metadata Server (MDS) and 1,008 Object Storage Targets
(OSTs). We focus on Atlas2, in which 144 Object Storage
Servers (OSSes) manage the I/O traffic for 1,008 OSTs
(144 × 7) in a round-robin way. Titan nodes access Spider 2
via 172 I/O routers; the routers are evenly distributed through
the torus and route I/O traffic statically [12], [13]: a compute
node is connected to a fixed group of “closest” I/O routers.

In contrast to GPFS, data striping in Lustre is user-
controlled, as shown in Figure 3b.
Lustre striping policy. A burst is partitioned into a sequence
of equal-sized blocks, distributed across a sequence of OSTs
in a round-robin way. The block size, OST-sequence length,
and OST start index are three configurable parameters, called
stripe size, stripe count and starting OST. Atlas2 takes 1MB
(stripe size), 4 (stripe count) and a randomly chosen starting
OST as its default configuration.

Across two representative filesystems, we find that:
Observation 2 . From the view of I/O writes, supercomputer
I/O systems are multi-stage write paths, including the stages
from compute node to storage target (shown in Figure 2).
Observation 3 . For a write pattern on a write path, aggregate
load on each stage can be estimated/predicted according to the
burst size and the numbers of compute nodes/cores in use.
Observation 4 . For a write pattern of a job on a supercom-
puter, the locations of the compute nodes are known at job
allocation. The resources used (e.g., the number of I/O routers)
and load distribution among the resources for both compute
nodes and network interconnect are known based on the job
location and the supercomputer’s network configuration.
Observation 5 . For a write pattern of a job on a filesystem,
the resources used and load distribution on the servers/targets

A burst

Objects

NSD
Servers

NSDs

a0 a1 a2 a3 a4 a5 a6 a7 a8

NSD35 NSD36 NSD37 NSD38 NSD39 NSD40 NSD41 NSD42 NSD43

Sev35 Sev36 Sev37 Sev38 Sev39 Sev40 Sev41 Sev42 Sev43

a7 a8a5 a6a3 a4a1 a2a0

GPFS block size

(a) GPFS striping. For concurrent bursts of a
write operation, each burst is striped indepen-
dently (§II-B1).

A burst

OST20

ao

a4

a1

a5

a2

a6

a3

a7

OST21 OST22 OST23 OST24

a8Objects

OSSes

OSTs

OSS20 OSS21 OSS22 OSS23 OSS24

a7 a8a5 a6a3 a4a1 a2a0

stripe size

stripe count

(b) Lustre striping For concurrent bursts of a
write operation, users can configure stripe size,
stripe count, and starting OST (§II-B2).

Fig. 3: GPFS and Lustre Striping Policies

for metadata and data services can be estimated based on the
write pattern, striping policy and server-target mapping.

III. MODELING WRITE PERFORMANCE OF
SUPERCOMPUTER I/O SYSTEMS

A. Parameters Influencing Write Performance

We consider the target systems as multi-stage write paths.
For each such path, we build features on the performance-
related parameters that potentially affect the time cost on
individual and correlated I/O stages, and interference (noise).

For a stage on a write path, we consider three performance-
related parameters: aggregate load, load skew, and resources
in use. For a metadata server stage, aggregate load represents
the number of overall metadata operations of a write pattern.
For the remaining stages, aggregate load represents the total
Bytes of data generated by the pattern. We define load skew
of a stage based on its straggler. Specifically, load skew is the
maximum load (maximum number of metadata operations or
maximum Bytes of data) on a single component of a stage.
For example, for I/O router stage on Lustre deployments,
load skew is the maximum Bytes of data processed by a
single router. Moreover, resources in use is the number of
components used in a stage. For example, at compute node
stage, resources in use is the number of the compute nodes
issuing write bursts. As our follow-on analysis shows that load
skew is an important factor to consider for prediction accuracy
and performance improvement.

Resources on some stages are not partitionable. Cetus/Mira-
FS1 has one such stage: the Infiniband Network (the network
and links are always used concurrently); Titan/Atlas2 has two
such stages: the metadata server and the SION network. For
these stages, we consider only one parameter: aggregate load.

With no loss of generality, we consider a write pattern that
produces m × n bursts (size K Bytes) from m nodes with
n cores per node. Our modeling approach can also be used
to predict the performance of more flexible/dynamic write
patterns when the write load and the compute nodes/cores in
use are known before issuing writes. In particular, the load

imbalance among compute nodes can be addressed as load
skew at the compute-node stage.

For the pattern on a stage of a system, the performance-
related parameters can be collected or estimated. We demon-
strate the process on locating the parameters below and
summarize the relative notations in Table I.

Besides collecting parameters from m, n, K, for
Cetus/Mira-FS1, we estimate the number of subblocks per
burst (nsub) based on the write pattern and GPFS subblock
policy (§II-B1). We collect the numbers of bridge nodes in use
(nb), links in use (nl), and I/O nodes in use (nio) based on
the locations of the m nodes and the network configurations in
Cetus (Observation 4). Similarly, we estimate load skew on
bridge nodes, links and I/O nodes by collecting the information
on sb, sl, sio, which represent the sizes of the largest node
groups in the m nodes that connect to the same bridge node,
the same link, and the same I/O node, respectively.

Moreover, on Mira-FS1, for each of the m × n bursts we
estimate the number of NSDs in use (nd) based on the write
pattern, GPFS block size and GPFS striping policy (§II-B1),
and estimate the number of NSD servers in use (ns) based on
nd and the mapping from NSD servers to NSDs (Observation
5). Moreover, according to GPFS striping policy each burst

chooses starting NSDs randomly and independently. Theoreti-
cally, for the m×n bursts the numbers of NSDs in use (nnsd)
and NSD servers in use (nnsds) are both random. Statistically,
these numbers are bound to m, n, nd, ns: i) The more bursts
(m × n) a write pattern produces, the larger nnsd, nnsds are
likely in use. ii) The more NSDs/NSD servers each burst uses
(nd, ns), the larger nnsd, nnsds are likely in use. Accordingly,
we estimate nnsds, nnsd based on m, n, ns, nd.

For Titan/Atlas2, we collect the number of I/O routers in
use (nr) and estimate load skew on routers based on the largest
node group (sr) in the m nodes that connect to the same router.
nr and sr are known from the node-locations and the node to
I/O router mapping in Titan (Observation 4).

On Atlas2, we estimate the number of OSTs in use (nost)
by write pattern and the configurations on Lustre striping
(discussed in §II-B2). We estimate the number of OSSes in use

TABLE I: Notations used for the performance-related parameters. Section III-A presents the definitions in detail.

Target System Collectable Parameters Predictable Parameters
Cetus/Mira-FS1 m,n,K, nsub, nb, nl, nio, sb, sl, sio nd, ns, nnsd, nnsds

Titan/Atlas2 m,n,K, nr, sr nost, noss, sost, soss

(noss) based on nost and the mapping from OSSes to OSTs in
Atlas2. We estimate the load skew on OSTs (sost) and OSSes
(soss) according to the striping configurations and OSS-OST
mapping (Observation 5).

B. Features

For a performance-related parameter on a stage of a write
path, we derive two features for positive and inverse correla-
tions. In particular, we take only positive feature for subblock-
related parameters on Cetus/Mira-FS1: when a burst has no
subblock (e.g., 8MB burst), the positive feature value is 0.

Moreover, we build features for interference by following
the observations on Titan’s I/O system [10]. Specifically,
in a production environment I/O interference is positively
correlated to the number of compute nodes (m) and inversely
correlated to the aggregate burst size (1

m×n×K). Thus, for the
target systems, we use three features to address interference,
including m, 1

m×n×K , and m
m×n×K .

1) Features for GPFS filesystems: Table II reports the 8
stages of the write path of a typical GPFS deployment, which
is also given in Figure 2a.
Metadata stage. On Cetus/Mira-FS1, we consider the features
for both metadata services and subblock operations. In partic-
ular, the aggregate load of metadata comes from two parts: the
numbers of file open and file close (m × n) and the number
of subblocks for the m× n bursts (m× n× nsub).
Stages within supercomputers (Compute Node, Bridge Node,
Link, I/O node). For these stages, aggregate load is the
aggregate data size of the write pattern (m× n×K), and the
resources in use (m, n, nb, nl, nio) can be collected directly
(§III-A). The load skew on the stages of compute node, bridge
node, link and I/O node can be estimated by n×K, sb×n×K,
sl × n×K, sio × n×K, respectively.
Infiniband Network stage. Aggregate load is m× n×K.
Stages within storage systems (NSD server, NSD). Aggregate
load is m × n × K. The resources in use for NSD servers
and NSDs (nnsds, nnsd) are determined by m×n×ns, m×
n× nd, respectively (§III-A). Moreover, we consider there is
no noticeable load skew on these two stages and accordingly
build no feature on it. In practice, load skew may occur on
NSDs and NSD servers; and from the application viewpoint,
the skew is unpredictable. In this study, we find and report
in Section IV that the write performance of Cetus/Mira-FS1
can be estimated accurately, suggesting GPFS striping policy
performs effectively in balancing write load across the entire
data pool. We conclude that, for large-scale writes on GPFS
filesystems, the load skew on these two stages is negligible.

Besides the features for individual stages, we also develop
cross-stage features for correlated stages. Compared to CPU
resources on supercomputers, I/O bandwidth is a shared and
a finite resource; I/O bottlenecks may occur on one or more

stages concurrently [6], [10]. To address the concurrent bottle-
necks from multiple stages, we consider adjacent stages on the
write paths as correlated stages, and build cross-stage features
to address concurrent load skew (potential bottlenecks) on
them. For example, for Compute Node and Bridge Node
stages, we build a cross-stage feature as (n×K)×(sb×n×K).

In summary, we build overall 41 features for a GPFS write
path, including 34 and 4 features for individual and correlated
stages, and 3 for interference, respectively.

2) Features for Lustre Filesystems: Tables III reports the 6
stages of a typical Lustre filesystem, also given in Figure 2b.
Metadata stage. Aggregate load is metadata operations for
file open and file close (m× n).
Stages within supercomputers (Compute Node, I/O Router).
For these two stages,aggregate load is the aggregate data size
(m×n×K) and the resources in use for compute node (m)
and I/O routers (nr) can be collected directly (§III-A). The
load skew on compute node and I/O routers can be estimated
by n×K and sr × n×K respectively.
SION stage. Aggregate load is m× n×K.
Stages within storage systems (OSS, OST). Aggregate load is
the aggregate data size (m×n×K). The resources in use for
OSS (noss) and OST (nost) and the load skew for these two
stages (soss, sost) can be predicted (§III-A).

Similar to Cetus/Mira-FS1, we build cross-stage features
for adjacent stages on the Lustre write path. In summary,
a Lustre write path has 30 features, including 24 and 3
features for individual and correlated stages, and 3 features
for interference, respectively.

C. A Cross-Platform Modeling Method

1) Building regression models: We model the mean end-
to-end write time (t) as a function (f) of a feature set X =
{x1, x2, ..., xn−1}, where f is a regression technique and each
xi is a feature.

t = f(x1, x2, ..., xn−1) (1)

To improve model interpretability and enhance prediction
accuracy, we build models with popular regression techniques
from three groups: (1) Linear models, (2) linear models with
feature selection (lasso and ridge), (3) nonlinear models with
feature selection (decision tree and random forest). Another
group of nonlinear models is also popular in performance
prediction. This group includes SVR (Support Vector Regres-
sion) and Gaussian process. They maintain all features and
transform the feature forms with kernels to enhance prediction
accuracy. In this work, we train SVR and Gaussian models
with two widely used kernels (RBF and polynomial), and
receive low prediction accuracy for both Cetus/Mira-FS1 and
Titan/Atlas2. We conclude that these techniques fail to provide

TABLE II: Features of individual stages of GPFS deployments
Performance-Related Parameter Metadata Cost Data-absorption Cost
Stage Metadata Subblock Compute Node Bridge Node Link Network NSD server NSD
Aggregate Load m× n, 1

m×n
m× n× nsub m× n×K, 1

m×n×K

Load Skew sio × n, 1
sio×n

sio × n× nsub n×K, 1
n×K

, K, 1
K

sb × n×K, 1
sb×n×K

sl × n×K, 1
sl×n×K

Used Resources nio, 1
nio

m, 1
m

, n, 1
n

nb, 1
nb

nl, 1
nl

ns, 1
ns

, nnsds, 1
nnsds

nd, 1
nd

, nnsd, 1
nnsd

TABLE III: Features of individual stages on Lustre deployments
Performance-Related Parameter Metadata Cost Data-absorption Cost
Stage Metadata Compute Node I/O Node SION OSS OST
Aggregate Load m× n, 1

m×n
m× n×K, 1

m×n×K

Load Skew n, 1
n

n×K, 1
n×K

, K, 1
K

sr × n×K, 1
sr×n×K

soss, 1
soss

sost, 1
sost

Used Resources m, 1
m

m, 1
m

, n, 1
n

nr , 1
nr

noss, 1
noss

nost, 1
nost

accurate predictions for our target systems, or at least they
require tuning.

2) Selecting the best models: For each method, we search
for the best model from a regression model space, trained
across subsets of the training set and the values of model
parameters. We select the trained models that deliver the
lowest MSEs (Mean Square Errors) on the validation set. In
this study, we train models on benchmark data from runs with
1-128 nodes, which are relatively cheap. We choose 20% of
the samples from each size range in 1-128 nodes at random
for the validation set, and use the remaining 80% of samples
for training. In §IV we evaluate how well the selected models
predict performance on a test set of runs with 200-2000 nodes,
which are not used for training or model selection.

D. A Convergence-Guaranteed Sampling Method

To train and evaluate the models, we benchmarked output
performance on Cetus and Titan with multiple experiment
samples under a range of parameters and conditions. We
choose IOR as a burst generator. IOR is widely used in
the HPC community to measure new deployments of super-
computer I/O systems, to capture the I/O characteristics of
scientific applications in filesystem studies [6], [10], [14]–[16],
and to compare the performance of storage systems and I/O
tuning techniques, e.g., for IO-500. This work uses IOR to
generate synthetic writes with various patterns and burst sizes
on various numbers of compute nodes and cores, and measures
their delivered performance. We summarize the method as five
steps capturing the key aspects of the method.

Step 1. To obtain good coverage across write scales under
a range of parameters, each experiment generates data for a
fixed write scale (m) by following one or more templates. A
template is a job script structured as multiple levels of for
loops, each loop varying a parameter. For the experiments on
GPFS deployments, each template varies the number of cores
per node (n) and burst size (K); for Lustre deployments, each
template varies n, K, W (stripe count).

Step 2. Each template attains good coverage on burst sizes
(K) by strategically choosing burst-size ranges and randomly
producing bursts in each chosen range. We consider bursts in
a wide range: 1MB—10GB (§II-A2). To guarantee balanced
burst-size coverage, we break it into 10 size ranges (Column
3 in Table IV and Table V), and generate a random burst size
for each range.

Step 3. Each template attains good coverage on the number
of cores per node (n) and stripe count (W). Similar to the
process of generating burst sizes, for Lustre deployments like
Titan we generate the number of cores per node (n) and stripe
count (W) randomly. Specifically, for a template for Titan,
we generate 4 or 8 random numbers in the range of 1—16
(the maximum number of CPUs in a Titan compute node),
each number used as the number of cores per node; for stripe
count (shown as Table V Column 4), we consider the range
1—64 from observed production use, break it into 5 stripe-
count-ranges, and choose a random value within each stripe-
count-range. For GPFS deployments like Cetus Mira-FS1, the
systems limit users to take n from {1, 2, 4, 8, 16} (16 is the
maximum number of cores in a Cetus compute node), so we
vary n within that range.

Step 4. Each template attains samples on different compute-
node locations and background I/O interference by executing
many jobs from the template at different times. To avoid
internal interference, we execute one job at a time. Following
the template, a job performs several rounds of IOR executions,
each round executing IOR with the varied parameter values
specified in the multi-level for-loops. Thus, the jobs of a
template yield benchmark data for the same parameters and
patterns, but at a sampling of times and conditions.

Step 5. A sample is the mean write time of identical IOR
executions. We consider two IOR executions to be identical if
they have the same parameters and patterns. A sample may
be generated from different jobs of the same template. To
assure that the data is stable, we estimate sample convergence
with the central limit theorem, which is widely used on data
with an unknown mean. 3 In particular, for the sample of r
identical IOR executions with write times:{t0, t1, ..., tr−1},
we consider the sample is converged with a confidence level
(1 − α) and error estimator (ζ). zα/2 is the value from the
standard normal distribution for the selected confidence level
1 − α; σ and t are the standard deviation and mean of the
r times. If we presume the expected mean is t̄, Formula 2
guarantees that ‖ t̄−tt ‖ ≤ ζ with the confidence level 1− α.

‖
zα/2 ×

(
σ√
n− 1

)
t

‖ ≤ ζ (2)

3In this study, the mean write time of identical IOR executions is unknown
beforehand.

TABLE IV: Write patterns on Cetus/Mira-FS1. The first
row generates data for both training and testing. The second
row generates larger bursts for training purpose only. The third
row repeats the write patterns of production codes (§IV-A).

Scale (m) Cores per
Node (n)

Burst Size (K)

1, 2, 4, 8, 16,
32, 64, 128,
200, 256, 400,
512, 800, 1000,
2000

1, 2, 4, 8, 16 1MB—5MB 6MB—25MB
25MB—100MB 101MB—250MB
251MB—500MB 501MB—1024MB
1025MB—2560MB

1, 2, 4, 8, 16,
32, 64, 128

1, 2, 4, 8, 16 2561MB—5120MB 5121MB—
7680MB 7681MB—10240MB

1000, 2000 1, 2, 4, 8, 16 4MB, 23MB, 59MB, 69MB, 121MB,
376MB, 750MB, 1024MB, 1280MB

TABLE V: Write patterns on Titan/Atlas2. We generate
these patterns following the same rule presented in Table IV.

Scale (m) Cores per
Node (n)

Burst Size (K) stripe width ((W))

1, 2, 4, 8,
16, 32, 64,
128, 200,
256, 400,
512, 800

8 from 16 1MB—5MB 6MB—25MB 25MB—
100MB 101MB—250MB 251MB—
500MB 501MB—1024MB 1
025MB—2560MB

1—4 5—8 9—16
17—32 33—64

1, 2, 4, 8,
16, 32, 64,
128

4 from 16 2561MB—5120MB 5121MB—
7680MB 7681MB—10240MB

1—4 5—8 9—16
17—32 33—64

1000,
2000

1, 4 4MB, 23MB, 59MB, 69MB,
121MB, 376MB, 750MB, 1024MB,
1280MB

4, 5—64

IV. EXPERIMENTAL EVALUATIONS

We use IOR to generate data for model training and testing
and optimize the write performance through model-guided I/O
adaptations.

A. Experiment Data

We train models on small-scale writes (≤128 compute
nodes). Then, we test the trained models on medium (200—
800 nodes) and large-scale (1000, 2000 nodes) writes. For
the small and medium-scale writes, we generate the data
with extensive write patterns by following the benchmarking
method (III-D). On the large-scale writes, we generate the
testing data by repeating the write patterns of real applications,
including XGC, GTC [17], S3D, PlasmaPhysics, Turbulence1,
Turbulence2, and AstroPhysics reported in [18]. We determine
the write scale of training data as 1 — 128 compute nodes
in consideration of the ratios of compute node to I/O node
(128:1 on Cetus) and compute node to I/O router (110:1 on
Titan). We produce the training and testing data by following
the templates in Tables IV and V.

We focus on the writes ≥5 seconds, since in production
runs smaller writes are usually hidden by the client-side page
cache and make little impact on application performance.
We produced 3,899 and 4,004 converged samples (defined
in §III-D) for training on Cetus/Mira-FS1 and Titan/Atlas2,
respectively. For the training set on Cetus/Mira-FS1 a write
scale has 394 — 646 samples; for the set on Titan/Atlas2 a
write scale has 427 — 569 samples. We evaluate our approach
on 4 test sets of a target system, with 3 sets for converged
samples and 1 for unconverged samples. The 3 converged sets
are grouped on the write scales of the samples: small set (on

200, 256 nodes), medium set (on 400, 512 nodes), large set (on
800, 1000, 2000 nodes). For small/medium/large sets, each set
has 278, 174, 133 samples on Cetus/Mira-FS1, 237, 226, 273
samples on Titan/Atlas2. The unconverged sets are generated
on the write scales on 200—2000 nodes, including 169 and
180 samples for Cetus and Titan respectively.

B. Chosen Models and Features

For each regression technique, we train models across
255 training sets, each a combination of datasets built on
the write scales in 1 — 128 nodes. By following the
modeling method (§III-C), we identify 10 models each for
a regression technique on a target system, including two
linear models (linearbest cetus, linearbest titan), two lasso
models (lassobest cetus, lassobest titan), two ridge models
(ridgebest cetus, ridgebest titan), two decision tree models
(treebest cetus, treebest titan), and two random forest models
(forestbest cetus, forestbest titan).

We also train models with the training data on 1 — 128
nodes as the baseline cases. In summary, we address 10
additional models, each named as a base model for a regression
method on a target system (e.g., linearbase cetus).

C. Model Evaluation

1) Evaluating the modeling method: We apply the model-
ing method (§III-C) on five representative regression models
and compare the prediction accuracy to the results of the
corresponding baseline models (defined in §IV-B). Figure 4
presents the results. For all regression techniques on the testing
sets of both target systems, the chosen models report higher
prediction accuracy. Specifically, for a learning technique on
Cetus/Mira-FS1, the chosen model show 1.34× — 52.6×
better prediction accuracy in MSE (mean square error). For
a technique on Titan/Atlas2, the chosen models show 1.21×
— 1.62× better prediction accuracy in MSE. Moreover, the
results also suggest that the chosen lasso models deliver the
best prediction accuracy on both of the target systems and for
both converged and unconverged samples.

2) Model accuracy: We use relative true error (ε) as the
error estimator. Consider the mean time of the ith sample is
ti, its prediction result is t′i,

εi =
t′i − ti
ti

(3)

εi > 0 suggests that ti is over estimated; εi < 0 suggests
that ti is under estimated; ‖εi‖ quantifies prediction accuracy:
smaller ‖εi‖ indicates higher accuracy. We focus on: ‖ε‖=0.2
and = 0.3. We choose these two thresholds in considerations
of two factors: 1) These two thresholds are widely used as the
conventional numbers in accuracy measurements [19]; 2) for
HPC applications, the time cost on I/O writes are expected
to be ∼10% of the total runtimes (see §II-A1). Plus 0.2—0.3
prediction error, we expect the guaranteed I/O cost as of 7%
— 13% of the total runtimes, which is generally acceptable
for production runs [10], [13], [20].

TABLE VI: The chosen lasso models on Cetus/Mira-FS1 and Titan/Atlas2. The models are defined in §IV-B. Each row
reports the parameters of a model, including training set, value of the shrinkage parameter (λ) and selected features. For each
lasso model, we report the intercept, the selected features and their corresponding coefficients.

Model Name Training Set λ Intercept Selected Features

lassobest cetus {32 — 128} 0.01 0.902 0.0864 5.812∧−4 4.301∧−5 2.646∧−4 0.0022 2.535∧−4 5.167∧−4 3.238∧−6 5.958∧−13 2.97∧−10

n sl × n×K sb × n×K m× n n×K nnsds sio × n×K nnsd (sl × n×K)× (sb × n×K) (sb × n×K)× nnsds

lassobest titan {16 — 128} 0.01 1.7826 3.485∧−4 -0.010 2.91∧−4 8.963∧−5 1.463∧−6 2.116∧−4 9.315∧−11 1.925∧−10

K nr sr × n×K sost m× n×K n×K (n×K)× (sr × n×K) (sr × n×K)× noss

TABLE VII: Prediction accuracy of the chosen lasso models. This table presents the accuracy of the chosen lasso models
(defined in §IV-B and shown in Table VI) on the four test sets for the two target systems.

Target System Model small set medium set large set unconverged samples
‖ε‖ ≤ 0.2 ‖ε‖ ≤ 0.3 ‖ε‖ ≤ 0.2 ‖ε‖ ≤ 0.3 ‖ε‖ ≤ 0.2 ‖ε‖ ≤ 0.3 ‖ε‖ ≤ 0.2 ‖ε‖ ≤ 0.3

Cetus/Mira-FS1 lassobest cetus 99.64% 100% 74.14% 90.8% 76.69% 93.98% 44.97% 63.91%
Titan/Atlas2 lassobest titan 96.2% 98.31% 93.36% 94.69% 82.42% 84.25% 12.78% 20.56%

R
el

at
iv

e
M

SE
no

rm
al

iz
ed

to
th

e
m

in
M

SE

linear lasso ridge decision tree random forest
0

10

20

30

40

50

(a) converged on Mira

linear lasso ridge decision tree random forest
0

10

20

30

40

50

(b) unconverged on Mira

linear lasso ridge decision tree random forest
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) converged on Titan

linear lasso ridge decision tree random forest
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(d) unconverged on Titan

Fig. 4: MSEs on Cetus/Mira-FS1 and Titan/Atlas2. In each subfigure, we report the results of five regression techniques.
For a technique in a subfigure, we report the results of two models: the best model chosen by our approach (left) and the
baseline model (right); for a model in a subfigure, we normalize its MSE (mean square error) to the minimum MSE among
the models on the same testing set.

5.06 20.24 38 64.31 114.39 241.42 1281.38

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_gpfs

lasso
best_gpfs

ridge
best_gpfs

decision
best_gpfs

forest
best_gpfs

(a) results on small set

5.36 21.35 51.9 85.11 146.56 240.78 1445.93

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_gpfs

lasso
best_gpfs

ridge
best_gpfs

decision
best_gpfs

forest
best_gpfs

(b) results on the medium set

5.03 17.75 39.09 72.39 124.95 272.42 2073.93

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_gpfs

lasso
best_gpfs

ridge
best_gpfs

decision
best_gpfs

forest
best_gpfs

(c) results on the large set

Fig. 5: Model accuracy on the converged test sets of Cetus/Mira-FS1. Each subfigure plots the relative true errors (ε) of
five models on a test set; the errors are sorted along the x-axis based on t. The test sets, ε and t are defined in §IV-C.

We focus on the performance of the best models identified
by our learning approach. Figures 5 and 6 plot the error
accuracy of the models on the three converged test sets for the
two target systems. It is clear that the best lasso models deliver
the best overall prediction accuracy for both of the target
systems. We report the chosen lasso models in Table VI and
summarize the prediction accuracy in Table VII. In particular,
for the lasso models on Cetus/Mira-FS1 and Titan/Atlas2,
74.14% — 99.64% of the samples on the small/medium/large
sets report ‖ε‖ ≤0.2, 84.25% — 100% of the samples on the
sets report ‖ε‖ ≤0.3. In conclusion, the chosen lasso models
are highly accurate on the target systems.

Moreover, our approach identifies the effective features in
the target environments. As listed in Tables VI, lasso can
interpret the write behaviors of the target systems effectively.
In particular, we find that: (1) The write behaviors of Ce-
tus/Mira-FS1 are dominated by the metadata load, load skew
in the supercomputer, and the resources used in the filesystem;
(2) The write behaviors of Titan/Atlas2 are heavily determined
by the aggregate load, load skew, and resources used within
supercomputers.

D. Model-Guided I/O Middleware
Finally, we consider the potential value of using the perfor-

mance models to configure I/O middleware systems for best

5.02 7.67 12.78 17.57 31.21 46.74 129.94

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_lustre

lasso
best_lustre

ridge
best_lustre

decision
best_lustre

forest
best_lustre

(a) results on the small set

5.1 12.07 22.74 34.59 51.95 75.11 251.76

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_lustre

lasso
best_lustre

ridge
best_lustre

decision
best_lustre

forest
best_lustre

(b) results on the medium set

5.01 10.02 17.16 31.9 73.29 138.02 377.78

Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
T

ru
e

E
rr

or

linear
best_lustre

lasso
best_lustre

ridge
best_lustre

decision
best_lustre

forest
best_lustre

(c) results on the large set

Fig. 6: Model accuracy on the converged test sets of Titan/Atlas2. Each subfigure plots the relative true errors (ε) of five
models on a test set; the errors are sorted along the x-axis based on t. The test sets, ε and t are defined in §IV-C.

performance. We focus on the chosen lasso models for their
high prediction accuracy.

Many supercomputer applications use I/O middleware sys-
tems like ADIOS and ROMIO because they offer flexible I/O
APIs and opportunities to improve I/O performance trans-
parently. At launch time, the run is assigned to a group of
compute nodes and issues write requests from its nodes/cores
periodically. An I/O middleware system provides write adap-
tation: it selects a subset of the engaged nodes/cores as
aggregators, directs the output data from compute nodes to
selected aggregators, and writes the output to the external
storage systems from the aggregators. Today, write adaptations
are configured by various heuristics.

In this study, we use the chosen lasso models to select an
aggregator configuration based on predicted performance of
the candidates. We determine the number of aggregators, the
burst-size per aggregator, and the aggregator locations. As is
discussed in Section IV-C2, for both of Cetus/Mira-FS1 and
Titan/Atlas2 the load skew within supercomputers affects the
write performance heavily. Thus, we strategically choose the
aggregator locations to use the links and I/O nodes (for Mira)
or the I/O routers (for Titan) in a balanced way. Each run in the
benchmark data gives the node locations for the runs, allowing
us to compute load skew on the I/O routers generated by the
run. The model-guided search selects from among candidate
aggregator configurations with a balanced load. On Lustre, the
search also considers the striping parameters of the candidates.

We compared predicted performance for the best candidate
adaptations for samples in the test set (samples with 200-2000
compute nodes) on both targets. We estimate the potential gain
from I/O adaptation by t′′+e, where t′′ is the predicted value
by the chosen lasso model with the adapted feature values,
e = t′−t is the error of the predicted value by the model with
the original feature values (t′) and the observed write time (t).
Specifically, we presume that, for a write pattern on a target
system, the prediction error does not change. And under this
condition we measure the expected performance improvement
by t′′+e

t . Note that this measure does not consider any over-
heads to move data to the aggregators, which we expect to

1 5 10 15 20 25 30
Ratio of Performance Improvement

0

0.2

0.4

0.6

0.8

1

C
D

F

cetus all data
cetus converged data
cetus unconverged data
titan all data
titan converged data
titan unconverged data

Fig. 7: Predicted performance improvement using model-
guided I/O adaptation to configure aggregators for the I/O
patterns of samples in the test set.

reduce the benefit modestly.
Figure 7 reports the results. It shows that, for Cetus/Mira-

FS1, 82.4% of the overall samples report ≥1.1× performance
improvement; for Titan/Atlas2, 71.6% of the overall samples
show ≥1.15× performance improvement. We conclude that,
under the guidance of our models, I/O adaptation within su-
percomputers can attain performance improvement. We leave
the verification on real applications as our future work.

V. RELATED WORK

A group of studies [21]–[23] adopt learning models to
predict the I/O behaviors of HPC applications. In particular,
Kunkel et.al [21] build decision trees to predict applica-
tions’ non-contiguous I/O behaviors and further determine
the parameter combinations for data sieving in ROMIO [24].
Omnisc’IO [22], inspired by Sequitur algorithm, introduces
a context-free grammar to learn I/O patterns of HPC ap-
plications. Mckenna et.al [23] model application runtimes
and I/O patterns by building training set on job logs and
system monitoring tools. Compared to the works in this group,
our study presumes that applications’ I/O patterns/behaviors
are known and given, and builds learning models on the

features derived from both I/O patterns and filesystem’s design
and configuration. Another group of studies [25], [26] use
learning models to predict the I/O performance variability
of supercomputers. Wan et.al [25] builds a hidden Markov
model for a Lustre filesystem to learn the variability of I/O
latencies from a single client to a single OST. Madireddy [26]
et.al uses Gaussian process to predict the I/O performance
variability of a Lustre-based supercomputer and derive system-
specific features from Lustre monitoring tools. Different from
the studies in this group, we address the variability issue
in two ways: 1) modeling the mean performance of various
I/O patterns, 2) deriving features to address I/O interference
from competing loads. Xie et.al [14] also analyzes the I/O
performance of large-scale parallel filesystems with machine
learning techniques. Differently, they predict the I/O perfor-
mance with one regression model but we introduce a system-
atic modeling method on five popular regression methods and
apply the modeling results on performance improvement.

VI. CONCLUSIONS

In this paper, we build regression models to predict write
performance for GPFS- and Lustre-based filesystems under
production load. We take the mean write time as the model
target; generate features to address the load, load skew and
resources in use on separate and correlated stages of the target
multi-stage write paths; introduce a convergence-guaranteed
sampling method to produce a training set space with a good
variety and low benchmarking cost; and, finally propose an
approach to search for the best model from a rich model space
for each target write path.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-00OR22725. This work
was supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357. This research used resources
of the Argonne Leadership Computing Facility at Argonne Na-
tional Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02-
06CH11357. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

REFERENCES

[1] W. Shin, C. Brumgard, B. Xie, S. Vazhkudai, D. Ghoshal, S. Oral, and
L. Ramakrishnan, “Data Jockey: Automatic data management for HPC
multi-tiered storage systems,” in IPDPS’19, 2019.

[2] Argonne Leadership Computing Facility, “Cetus,” https://www.alcf.anl.
gov/user-guides/computational-systems.

[3] Oak Ridge Leadership Computing Facility, “Titan Cray XK7,” https:
//www.olcf.ornl.gov/computing-resources/titan-cray-xk7/.

[4] Oak Ridge Leadership Computing Facility (OLCF), “Summit,” https:
//www.olcf.ornl.gov/olcf-resources/compute-systems/summit/.

[5] G. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns, “UMAMI: a recipe for generating meaningful
metrics through holistic i/o performance analysis,” in PDSW’17, 2017.

[6] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC’12, 2012.

[7] G. Bateman, S.-H. Ku, J. Cummings, C.-S. Chang, and A. Kritz, “Xgc
documentation,” http://w3.physics.lehigh.edu/xgc/, 2016.

[8] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical
simulations of turbulent combustion using S3D,” Computational Science
and Discovery, 2009.

[9] M. Gilge et al., IBM system blue gene solution: blue gene/Q application
development, 2014.

[10] B. Xie, Y. Huang, J. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and
S. Oral, “Predicting output performance of a petascale supercomputer,”
in HPDC’17, 2017.

[11] Argonne National Laboratory, “Darshan: HPC I/O Characterization
Tool,” http://www.mcs.anl.gov/research/projects/darshan.

[12] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Z. Zhang,
and B. W. Settlemyer, “Workload characterization of a leadership class
storage cluster,” in PDSW’10, 2010.

[13] B. Xie, J. Chase, D. Dillow, S. Klasky, J. Lofstead, S. Oral, and
N. Podhorszki, “Output performance study on a production petascale
filesystem,” in HPC-IODC’17, 2017.

[14] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. Vazhkudai, and F. Wang, “Applying machine learning to understand
write performance of large-scale parallel filesystems,” in PDSW’19,
2019.

[15] B. Xie, S. Oral, C. Zimmer, J. Y. Choi, D. Dillow, S. Klasky, J. Lofstead,
N. Podhorszki, and J. Chase, “Characterizing output bottlenecks of a
production supercomputer: Analysis and implications,” ACM TOS’20,
2020.

[16] B. Xie, “Output performance of petascale file systems,” Ph.D. disserta-
tion, Duke University, 2017.

[17] Z. Lin, T. S. Hahm, W. Lee, W. Tang, and R. B. White, “Turbulent
transport reduction by zonal flows: Massively parallel simulations,”
Science, 1998.

[18] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in MSST’12, 2012.

[19] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, 2001.

[20] C. S. Chang, S. Klasky, J. Cummings, R. Samtaney, A. Shoshani,
L. Sugiyama, D. Keyes, S. Ku, G. Park, S. Parker et al., “Toward a
first-principles integrated simulation of tokamak edge plasmas,” Journal
of Physics: Conference Series, 2008.

[21] J. Kunkel, M. Zimmer, and E. Betke, “Predicting performance of non-
contiguous I/O with machine learning,” in ISC’15, 2015.

[22] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: a
grammar-based approach to spatial and temporal I/O patterns predic-
tion,” in SC’14, 2014.

[23] R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer,
“Machine learning predictions of runtime and IO traffic on high-end
clusters,” in CLUSTER’16, 2016.

[24] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in
ROMIO,” in Frontiers’ 99, 1999, pp. 182–189.

[25] L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky,
“Analysis and modeling of the end-to-end I/O performance on OLCF’s
titan supercomputer,” in HPCC/SmartCity/DSS, 2017.

[26] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Sny-
der, and S. M. Wild, “Machine learning based parallel I/O predictive
modeling: A case study on lustre file systems,” in ISC’18, 2018.

https://www.alcf.anl.gov/user-guides/computational-systems
https://www.alcf.anl.gov/user-guides/computational-systems
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://w3.physics.lehigh.edu/xgc/
http://www.mcs.anl.gov/research/projects/darshan

	Introduction
	Background
	Properties of Target Scientific Codes
	Write Behaviors
	Write Patterns in Production Load

	Supercomputers and Their Filesystems
	GPFS on Cetus and Mira-FS1
	Lustre on Titan and Atlas2

	Modeling Write Performance of Supercomputer I/O Systems
	Parameters Influencing Write Performance
	Features
	Features for GPFS filesystems
	Features for Lustre Filesystems

	A Cross-Platform Modeling Method
	Building regression models
	Selecting the best models

	A Convergence-Guaranteed Sampling Method

	Experimental Evaluations
	Experiment Data
	Chosen Models and Features
	Model Evaluation
	Evaluating the modeling method
	Model accuracy

	Model-Guided I/O Middleware

	Related Work
	Conclusions
	References

